Extensions 1→N→G→Q→1 with N=D10.C23 and Q=C2

Direct product G=NxQ with N=D10.C23 and Q=C2
dρLabelID
C2xD10.C2380C2xD10.C2^3320,1592

Semidirect products G=N:Q with N=D10.C23 and Q=C2
extensionφ:Q→Out NdρLabelID
D10.C23:1C2 = (D4xC10):C4φ: C2/C1C2 ⊆ Out D10.C23408+D10.C2^3:1C2320,1105
D10.C23:2C2 = (C2xD4):6F5φ: C2/C1C2 ⊆ Out D10.C23808-D10.C2^3:2C2320,1107
D10.C23:3C2 = (C2xD4):8F5φ: C2/C1C2 ⊆ Out D10.C23808-D10.C2^3:3C2320,1109
D10.C23:4C2 = (C2xQ8):6F5φ: C2/C1C2 ⊆ Out D10.C23808+D10.C2^3:4C2320,1122
D10.C23:5C2 = (C2xQ8):7F5φ: C2/C1C2 ⊆ Out D10.C23808+D10.C2^3:5C2320,1123
D10.C23:6C2 = C4oD20:C4φ: C2/C1C2 ⊆ Out D10.C23808D10.C2^3:6C2320,1132
D10.C23:7C2 = D4:F5:C2φ: C2/C1C2 ⊆ Out D10.C23808D10.C2^3:7C2320,1133
D10.C23:8C2 = D10.C24φ: C2/C1C2 ⊆ Out D10.C23408+D10.C2^3:8C2320,1596
D10.C23:9C2 = C4oD4xF5φ: C2/C1C2 ⊆ Out D10.C23408D10.C2^3:9C2320,1603
D10.C23:10C2 = D5.2+ 1+4φ: C2/C1C2 ⊆ Out D10.C23408D10.C2^3:10C2320,1604
D10.C23:11C2 = C23:F5:5C2φ: C2/C1C2 ⊆ Out D10.C23804D10.C2^3:11C2320,1083

Non-split extensions G=N.Q with N=D10.C23 and Q=C2
extensionφ:Q→Out NdρLabelID
D10.C23.1C2 = M4(2):3F5φ: C2/C1C2 ⊆ Out D10.C23408D10.C2^3.1C2320,238
D10.C23.2C2 = M4(2):4F5φ: C2/C1C2 ⊆ Out D10.C23808D10.C2^3.2C2320,240
D10.C23.3C2 = M4(2):1F5φ: C2/C1C2 ⊆ Out D10.C23408D10.C2^3.3C2320,1065
D10.C23.4C2 = M4(2):5F5φ: C2/C1C2 ⊆ Out D10.C23808D10.C2^3.4C2320,1066
D10.C23.5C2 = (C2xQ8):4F5φ: C2/C1C2 ⊆ Out D10.C23808-D10.C2^3.5C2320,1120
D10.C23.6C2 = D5.2- 1+4φ: C2/C1C2 ⊆ Out D10.C23808-D10.C2^3.6C2320,1600
D10.C23.7C2 = C42:6F5φ: C2/C1C2 ⊆ Out D10.C23404D10.C2^3.7C2320,200
D10.C23.8C2 = C42:3F5φ: C2/C1C2 ⊆ Out D10.C23804D10.C2^3.8C2320,201
D10.C23.9C2 = (C2xC8):F5φ: C2/C1C2 ⊆ Out D10.C23804D10.C2^3.9C2320,232
D10.C23.10C2 = C20.24C42φ: C2/C1C2 ⊆ Out D10.C23804D10.C2^3.10C2320,233
D10.C23.11C2 = (C2xC8):6F5φ: C2/C1C2 ⊆ Out D10.C23804D10.C2^3.11C2320,1059
D10.C23.12C2 = C20.12C42φ: trivial image804D10.C2^3.12C2320,1056

׿
x
:
Z
F
o
wr
Q
<