Extensions 1→N→G→Q→1 with N=D10.C23 and Q=C2

Direct product G=N×Q with N=D10.C23 and Q=C2
dρLabelID
C2×D10.C2380C2xD10.C2^3320,1592

Semidirect products G=N:Q with N=D10.C23 and Q=C2
extensionφ:Q→Out NdρLabelID
D10.C231C2 = (D4×C10)⋊C4φ: C2/C1C2 ⊆ Out D10.C23408+D10.C2^3:1C2320,1105
D10.C232C2 = (C2×D4)⋊6F5φ: C2/C1C2 ⊆ Out D10.C23808-D10.C2^3:2C2320,1107
D10.C233C2 = (C2×D4)⋊8F5φ: C2/C1C2 ⊆ Out D10.C23808-D10.C2^3:3C2320,1109
D10.C234C2 = (C2×Q8)⋊6F5φ: C2/C1C2 ⊆ Out D10.C23808+D10.C2^3:4C2320,1122
D10.C235C2 = (C2×Q8)⋊7F5φ: C2/C1C2 ⊆ Out D10.C23808+D10.C2^3:5C2320,1123
D10.C236C2 = C4○D20⋊C4φ: C2/C1C2 ⊆ Out D10.C23808D10.C2^3:6C2320,1132
D10.C237C2 = D4⋊F5⋊C2φ: C2/C1C2 ⊆ Out D10.C23808D10.C2^3:7C2320,1133
D10.C238C2 = D10.C24φ: C2/C1C2 ⊆ Out D10.C23408+D10.C2^3:8C2320,1596
D10.C239C2 = C4○D4×F5φ: C2/C1C2 ⊆ Out D10.C23408D10.C2^3:9C2320,1603
D10.C2310C2 = D5.2+ 1+4φ: C2/C1C2 ⊆ Out D10.C23408D10.C2^3:10C2320,1604
D10.C2311C2 = C23⋊F55C2φ: C2/C1C2 ⊆ Out D10.C23804D10.C2^3:11C2320,1083

Non-split extensions G=N.Q with N=D10.C23 and Q=C2
extensionφ:Q→Out NdρLabelID
D10.C23.1C2 = M4(2)⋊3F5φ: C2/C1C2 ⊆ Out D10.C23408D10.C2^3.1C2320,238
D10.C23.2C2 = M4(2)⋊4F5φ: C2/C1C2 ⊆ Out D10.C23808D10.C2^3.2C2320,240
D10.C23.3C2 = M4(2)⋊1F5φ: C2/C1C2 ⊆ Out D10.C23408D10.C2^3.3C2320,1065
D10.C23.4C2 = M4(2)⋊5F5φ: C2/C1C2 ⊆ Out D10.C23808D10.C2^3.4C2320,1066
D10.C23.5C2 = (C2×Q8)⋊4F5φ: C2/C1C2 ⊆ Out D10.C23808-D10.C2^3.5C2320,1120
D10.C23.6C2 = D5.2- 1+4φ: C2/C1C2 ⊆ Out D10.C23808-D10.C2^3.6C2320,1600
D10.C23.7C2 = C426F5φ: C2/C1C2 ⊆ Out D10.C23404D10.C2^3.7C2320,200
D10.C23.8C2 = C423F5φ: C2/C1C2 ⊆ Out D10.C23804D10.C2^3.8C2320,201
D10.C23.9C2 = (C2×C8)⋊F5φ: C2/C1C2 ⊆ Out D10.C23804D10.C2^3.9C2320,232
D10.C23.10C2 = C20.24C42φ: C2/C1C2 ⊆ Out D10.C23804D10.C2^3.10C2320,233
D10.C23.11C2 = (C2×C8)⋊6F5φ: C2/C1C2 ⊆ Out D10.C23804D10.C2^3.11C2320,1059
D10.C23.12C2 = C20.12C42φ: trivial image804D10.C2^3.12C2320,1056

׿
×
𝔽